Reducing Greenhouse Gas Emissions from Transportation Sources in Minnesota

A Study for the Minnesota Legislature

presented by

Adam Boies
Department of Mechanical Engineering

Metropolitan Energy Policy Coalition
April 2, 2008
Research Study Team
University of Minnesota

CTS
• Laurie McGinnis, Principal Investigator
• Jan Lucke, Coordinator

Mechanical Engineering
• David Kittelson, Principal Investigator
• Win Watts, Research Associate
• Adam Boies, PhD Student

Civil Engineering
• Julian Marshall, Principal Investigator
• Tyler Patterson, Masters Student
• Chris Weyandt, Undergrad. Student
• Steve Hankey, Extension Student

HHH Institute of Public Affairs
• Elizabeth Wilson, Principal Investigator
• Peter Nussbaum, Masters Student
Acknowledgements

• This study was funded by an appropriation from the Minnesota legislature.

• We are very grateful for the technical assistance provided by:
 – Peter Ciborowski and others at the MN Pollution Control Agency
 – Frank Pafko and others at the MN Department of Transportation
 – Jan Homan and others at Metro Transit
Background: Transportation GHG Reduction Goals

• Reduction targets for total GHG emissions established by the 2007 Minnesota Next Generation Energy Act. Percent reductions referenced to 2005 total emissions:
 – 15% by 2015
 – 30% by 2025
 – 80% by 2050

• Study assumed transportation’s reduction target proportional to transportation’s share of total GHG emissions (~24%)
Study Findings

• Transportation sector can achieve its target

• Meeting the goals requires three approaches
 – More efficient vehicles
 – Low-carbon fuels
 – Land use and system change/VMT

• Must start now
Background:
Minnesota Transportation Sector
GHG Emissions

- On-road gasoline LDV: 2,503 Mgge
- On-road Diesel: 636 Mgge
- Aviation: 477 Mgge
- Other vehicles and fuels: 238 Mgge
- Railroad: 79 Mgge
- Marine: 40 Mgge

Millions of gallons equivalent (Mgge) consumed
Analytical Framework

\[E = F \times C \times A \]

Emission \(E \) can be calculated as the product of fuel consumption \(F \), carbon content \(C \), and activity \(A \):

\[
E = \left(\frac{\text{Gallons}}{\text{Mile}} \right) \times \left(\frac{\text{Carbon}}{\text{Gallon}} \right) \times \left(\frac{\text{Vehicle Miles}}{\text{Traveled}} \right)
\]

Fuel Consumption \(\frac{\text{Gallons}}{\text{Mile}} \)

Carbon Content \(\frac{\text{Carbon}}{\text{Gallon}} \)

Activity \(\frac{\text{Vehicle Miles}}{\text{Traveled}} \)
Strategies

• **Light duty on-road vehicles (LDVs)**
 – Federal CAFE new vehicle MPG standard
 – California tailpipe new vehicle GHG emissions standards
 – Economic incentives for more efficient vehicles: fees and rebates
 – Many options for improving vehicle efficiency are available

• **Heavy duty on-road vehicles (HDVs)**
 – More efficient diesel engines
 – Other efficiency improvements (e.g., tires, aerodynamics)
 – Driving behavior and idle reduction

• **Airplanes, trains and ships**
 – High jet fuel price incentive for efficient aircraft
 – Trains and ships benefit from diesel efficiency technologies developed for on-road HDVs

Vehicle Fuel Consumption

\[E = F \times C \times A \]
Comparison: Proposed U.S. and International Light Duty Vehicle Efficiency Standards

- California and CAFE produce similar GHG reductions up to ~2015
- California produces larger reductions later
- Fuel savings rapidly offset higher cost of more efficient vehicle
- Many other major countries have more aggressive efficiency improvement goals: technology to achieve these goals exists

![Graph showing GHG emissions and targets for different standards.](image.png)

- Federal CAFE MPG standard through 2020 with proposed 2011-2015 phase-in
- California tailpipe GHG standard through 2020 - Phases 1 and 2
- Achieve Australia 2010 goal in 2015 plus 4%/yr mpg improvement through 2020
- Achieve Japan 2015 standard in 2020
Vehicles and Fuels – Potential for Fuel Economy Improvements

• Recent MIT study on the potential for fuel economy improvements found:
 – Combining 1987 vehicle weight and acceleration with 2006 driveline technology would increase fuel economy by
 – 50% for cars - 33% reduction in fuel consumption
 – 45% for light trucks - 31% reduction in fuel consumption

• These are greater improvements than targeted by CAFE and even slightly greater than the CA target
Economic Incentives for More Efficient LDVs

- Efficiency standards produce consumer savings
 - Fuel use reductions offset technology costs
 - Payback 1 to 6 years (at time of study)
 - NPV $900 to $2500 (15 year vehicle life)

- Feebates: Fees on inefficient vehicles and rebates for efficient vehicles
 - Emissions reductions can be comparable to standards
 - Combine with standards for larger reductions

- Feebates should be enacted with other states to leverage influence on vehicle makers’ decisions

- Real world case study: high fuel prices (2007-2008)
Fuel Carbon Content

\[E = F \times C \times A \]

- Carbon emissions must be evaluated on a total life cycle basis
- Changing fuel often changes vehicle fuel consumption as well, e.g., Diesel engines are about 20% more efficient than current gasoline engines. This is accounted for in well to wheel analysis.
• Fuel carbon content must be calculated on a lifecycle basis
 – No standardized methods
 – Land use changes not well understood (e.g., converting virgin land to crop land)

• To reduce carbon fuel content over the long-term requires
 – Feedstocks other than corn
 – Improved production methods
• Current ethanol is no better than petroleum – cellulosic is the hope
• DME has the best footprint of any other portable fuel
• Electric vehicles with electricity from biomass or wind may be best for urban vehicles

Adapted from: Farrell and Sperling, 2007
Emissions Reductions from Low Carbon Fuels – Better Biofuels not more Biofuels

Baseline: E10 mandate
Scenario A: E20 mandate, no advancement in ethanol processing
Scenario B: E20 mandate, all ethanol produced by stover-fired dry mill process
Scenario C: E10 mandate, all ethanol from cellulosic sources – Achieves Low Carbon Fuel Standard
Land Use and System Shifts

\[E = F \times C \times A \]

• Understanding Reductions in VMT is more complex than fuel and vehicle changes.
 – Trip reduction
 – Mode shift
Minnesota VMT Trends: Historical and Projected

Vehicle miles traveled x 10^9

- Historic
- High Growth - 2.3%
- Medium Growth - 0.9%
- Low Growth - 0.0%

Year

Effect of VMT Growth Assumption on Emissions Reductions Strategies

LDV Lifecycle GHG Emissions, MMtCO₂e

- CAFE + Low Carbon Fuel Standard w. High VMT Growth
- CAFE + Low Carbon Fuel Standard w. Nominal VMT Growth
- CAFE + Low Carbon Fuel Standard w. No VMT Growth

Year

2015 Target

2025 Target
Strategies for VMT Reduction

• Pricing techniques
 – Congestion
 – Parking
 – Pay as you drive insurance

• Alternative travel modes
 – Mass transit
 – Non-motorized (bike, walk)

• Land use strategies
 – Population densification
 – Smart growth: transit-oriented development, mixed use

• Flexible commutes
 – Telecommuting
 – Flexible schedules, compressed schedules

• Process alteration
 – GHG emissions estimates in Environmental Impact Statements and local government plans
 – Educating public and private sectors
GHG Emissions By Travel Mode - Average Emissions

U.S. average GHG emissions per passenger-mile

- SUV (16 mpg)
- Car (23 mpg)
- Hybrid-electric car (35 mpg)
- Transit Bus (4 mpg)
- Light Rail
- Heavy Rail

Emissions per passenger-mile (gCO2e)

- Actual
- At maximum capacity
Combined Strategies

\[E = F \times C \times A \]

Results
MN State Strategies can be met by addressing F, C, and A. VMT growth rate is key.
Promising Technologies and Strategies for 2050 Reduction Goal

• Massive electrification of transportation
 – Decarbonize electricity production
 – Electric and plug-in hybrid electric vehicles
 – Electric transit, local and intercity

• Freight mode switching – truck to rail to electric rail

• Second generation biofuels
 – Non-food feedstocks, cellulosic, algal
 – Efficient biochemical and thermochemical conversion
 – Synthetic hydrocarbons likely as well as alcohols and ethers
 – Fuels used mainly for aircraft, trucks

• Land use and system shifts
Conclusions

• We can meet 2015 and 2025 transportation GHG reduction goals
 – Many strategy combinations possible…
 – But, we must start now!
• Fuel efficiency improvements offer significant economic benefits
• Lifecycle analysis is necessary to assess transportation GHG strategies
• Linking land use and transportation planning is key for VMT reduction
Thank You

for a summary of the study, visit
www.cts.umn.edu/Research/GreenhouseGas
Additional Charts
These have backup information that do not necessarily appear in the report
Future Research Related to GHG Emissions and Transportation Sector

• Economic analysis
• Role of fuel prices in reducing VMT
• Role of education
 – In improving fuel economy
 – In transportation choices
• Reducing dependency on conventional coal based electricity
• Health affects
Conclusions

• **2015 and 2025 transportation GHG reduction goals are technologically achievable**
 – Strategy combinations: reduce fuel consumption, VMT and fuel carbon content
 – Fuel economy standards more stringent than either CAFE or California are possible with available technology. Other nations have set more aggressive goals.
 – Policies such as low carbon fuel standard and vehicle efficiency/emissions standards are most effective when implemented with other states

• **Lifecycle (well- or field-to-wheels) analysis is necessary to assess transportation GHG strategies**
 – Electricity generation must be clean to realize overall reductions from electric vehicles
 – Production methods and land-use impacts of biofuels must be considered

• **Fuel efficiency improvements clearly benefit the Minnesota consumer**
 – Studies elsewhere show overall economic benefits for GHG reduction policies

• **VMT reduction requires understanding connection between land use and transportation**
Minnesota Statistics
Compared To U.S.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minnesota</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (\times 10^6)</td>
<td>5.1</td>
<td>296</td>
</tr>
<tr>
<td>Total GHG emissions (\text{MMtCO}_2\text{e})</td>
<td>155</td>
<td>7147</td>
</tr>
<tr>
<td>Emissions/capita (\text{Mt per person})</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>Transportation sector GHG emissions (\text{MMtCO}_2\text{e})</td>
<td>37.2</td>
<td>2000</td>
</tr>
<tr>
<td>Emissions/capita (\text{Mt per person})</td>
<td>7.3</td>
<td>6.8</td>
</tr>
<tr>
<td>Transportation sector % of total emissions</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Transportation sector GHG emissions growth 1995-2005 (\text{pct})</td>
<td>20</td>
<td>18 (1)</td>
</tr>
<tr>
<td>Total on-road vehicles registered (\times 10^6) (\text{(2)})</td>
<td>4.6</td>
<td>241</td>
</tr>
<tr>
<td>Vehicles per person</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>On-road vehicle fleet growth 1995-2005 (%)</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>VMT (\times 10^9)</td>
<td>57</td>
<td>2990</td>
</tr>
<tr>
<td>VMT growth 1995-2005 (%)</td>
<td>30</td>
<td>23</td>
</tr>
<tr>
<td>VMT per person (\times 10^3)</td>
<td>11.2</td>
<td>10.1</td>
</tr>
</tbody>
</table>

(1) Estimated based on CO\(_2\) only transportation emissions of 1,665 (1995) and 1,959 (2005) MMt
(2) Automobiles, light and heavy trucks, buses

Sources: U.S. Census Bureau, Mn Pollution Control Agency, U.S. Department of Transportation, U. S. Energy Information Agency, Bureau of Transportation Statistics, Center for Climate Studies 2008b, Mn Department of Transportation
Comparison of NHTSA CAFE Phase-In, CAFE Linear and California Standards MPG

<table>
<thead>
<tr>
<th>Year</th>
<th>Fleet Comp CAFE Phase In</th>
<th>Fleet Comp CAFE "Linear"</th>
<th>Fleet Comp CA 49 State</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>27.8</td>
<td>23.7</td>
<td>26.7</td>
</tr>
<tr>
<td>2012</td>
<td>29.2</td>
<td>25</td>
<td>29.5</td>
</tr>
<tr>
<td>2013</td>
<td>30.5</td>
<td>26.2</td>
<td>29.9</td>
</tr>
<tr>
<td>2014</td>
<td>31.0</td>
<td>27.5</td>
<td>30.4</td>
</tr>
<tr>
<td>2015</td>
<td>31.6</td>
<td>28.7</td>
<td>31.3</td>
</tr>
</tbody>
</table>
Vehicle Efficiency Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Fuel Economy Improvement</th>
<th>Estimated Cost per Vehicle</th>
<th>DOE Contribution</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Engine Friction</td>
<td>2% - 5.3% (0.6 – 1.4 mpg)</td>
<td>$33 - $151</td>
<td>• Low friction coatings</td>
<td>• Lubricant contributions to emissions</td>
</tr>
<tr>
<td>Cylinder Deactivation</td>
<td>4.2% - 6.4% (1.1 – 1.7 mpg)</td>
<td>$112 - $252</td>
<td>• Better lubricants</td>
<td>• Not useful for four cylinder engines</td>
</tr>
<tr>
<td>Improved Transmission</td>
<td>4.2% - 8.7% (1.1 – 2.4 mpg)</td>
<td>$140 - $350</td>
<td>• Fuel deployment</td>
<td>• Manufacturing acceptance</td>
</tr>
<tr>
<td>Renewable Fuel</td>
<td>0.8 gal petroleum displaced per gal of E85</td>
<td>$150</td>
<td>• Fuel production R&D</td>
<td>• Real cost vs. perceived cost</td>
</tr>
<tr>
<td>Integrated Starter Generator</td>
<td>4.2% - 7.5% (1.1 – 2.0 mpg)</td>
<td>$210 - $350</td>
<td>• Manufacturing acceptance</td>
<td>• Lower energy value (part of real cost)</td>
</tr>
<tr>
<td>Reduced Parasitic Losses</td>
<td>5% - 9.3% (1.4 – 2.5 mpg)</td>
<td>$225 - $500</td>
<td>• Accessory electrification</td>
<td>• Cost</td>
</tr>
<tr>
<td>Vehicle Lightweighting</td>
<td>6% - 24% (1.6 – 6.4 mpg)</td>
<td>$350 - $2,100</td>
<td>• Reduced rolling resistance</td>
<td>• Consumer acceptance of styling changes (aero)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Lower aerodynamic drag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Materials Improvements:</td>
<td>• Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• light weight steel,</td>
<td>• Manufacturing acceptance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• high strength aluminum,</td>
<td>• Potential (unwarranted) consumer safety concerns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Magnesium, and</td>
<td>• Recyclability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>composites</td>
<td></td>
</tr>
</tbody>
</table>
Vehicle Efficiency Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Fuel Economy Improvement(^{1})</th>
<th>Estimated Cost per Vehicle</th>
<th>DOE Contribution</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved Engine Mechanics</td>
<td>10% - 22% (mpg)</td>
<td>$700 - $1,470</td>
<td>• Camless Valve, Variable Compression</td>
<td>• Intake Throttling • Manufacturer acceptance</td>
</tr>
<tr>
<td>Mild Hybridization</td>
<td>10% - 15% (2.7 – 4.0 mpg)</td>
<td>$1,000 - $1,500</td>
<td>• NiMH Batteries • Electric Motors • Power Conversion and Management</td>
<td>• System Cost – reduce cost to boost consumer/manufacturer acceptance • Battery Life • Power Management – complexity, thermal tolerance</td>
</tr>
<tr>
<td>Advanced Combustion Engines</td>
<td>30% - 50% (8.0 – 13.5 mpg)</td>
<td>$2,000 - $3,000</td>
<td>• Advanced diesel engine • Emission controls – SCR catalyst, part filters • Low sulfur fuel</td>
<td>• Cost of engine/aftertreatment • Fuel (accessibility, consumer acceptance) • Assumed replacement of a comparable gasoline eng.</td>
</tr>
<tr>
<td>Full Hybridization</td>
<td>30% - 40% (8 – 10.8 mpg)</td>
<td>$3,000 - $5,000</td>
<td>• NiMH Batteries • Electric Motors • Power Conversion and Management</td>
<td>• System Cost – reduce cost to boost consumer/manufacturer acceptance • Battery Life • Power Conversion – complexity, thermal tolerance</td>
</tr>
</tbody>
</table>
Comparison of International GHG Emissions Standards

Feebates

<table>
<thead>
<tr>
<th>Feebate parameters</th>
<th>Fuel economy, mpg</th>
<th>Rebate or fee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 mpg pivot point (.033 gal/mi), E10 gasoline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>$1782 rebate</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$1332 rebate</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>$774 rebate</td>
<td></td>
</tr>
<tr>
<td>$18/gram CO$_2$e/mile rebate/surcharge rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$1062 fee</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$2664 fee</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$5310 fee</td>
<td></td>
</tr>
</tbody>
</table>

Data assumes 100% conversion of MPG to grams per mile CO$_2$e emissions

<table>
<thead>
<tr>
<th>Estimated Reduction 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>$18 g/ mi feebate policy alone</td>
</tr>
<tr>
<td>$36 g/ mi feebate policy alone</td>
</tr>
<tr>
<td>$18 g/ mi feebate policy and California standards combined</td>
</tr>
</tbody>
</table>

Based on McManus 2007 and LEAP model 2015 California standards reduction with +/- 20% uncertainty

Estimated contribution to Minnesota 2015 transportation GHG reduction goal from LDV feebate policy implemented in Minnesota as a member of Midwestern states policy coalition.
Lifecycle GHG Emissions

[Graph showing lifecycle GHG emissions for different energy sources and technologies, including gasoline upstream, gasoline tailpipe, biomass processing, feedstock production, and electricity generation.]
VMT Reductions from Smart Growth Strategies in Other U.S. Regions

<table>
<thead>
<tr>
<th>Area</th>
<th>Years</th>
<th>VMT reduction*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albany</td>
<td>2000 - 2015</td>
<td>7 - 14%</td>
</tr>
<tr>
<td>California</td>
<td>2000 - 2015</td>
<td>3 - 10%</td>
</tr>
<tr>
<td>Portland</td>
<td>1995 - 2010</td>
<td>6 - 8%</td>
</tr>
<tr>
<td>Puget Sound</td>
<td>2005 - 2050</td>
<td>10 - 25%</td>
</tr>
<tr>
<td>Sacramento</td>
<td>2001 - 2015</td>
<td>7%</td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>2000 - 2015</td>
<td>3%</td>
</tr>
</tbody>
</table>

*relative to a do-nothing alternative, in final year
VMT Reductions – Inputs for Estimates

- Energy intensity per passenger mile (lowest for trains)

<table>
<thead>
<tr>
<th>Mode of travel</th>
<th>Number of vehicles</th>
<th>Vehicle-miles</th>
<th>Passenger-miles</th>
<th>Load factor **</th>
<th>Amount of gasoline eq (gallons) (KWH*)</th>
<th>Energy intensities (Btu per passenger-mile)</th>
<th>Energy use (million Btu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycles</td>
<td>1.9E+05</td>
<td>3.3E+08</td>
<td>3.7E+08</td>
<td>1.1</td>
<td>6.6E+06</td>
<td>2.5E+03</td>
<td>2.3E+03</td>
</tr>
<tr>
<td>Automobiles</td>
<td>2.5E+06</td>
<td>2.8E+10</td>
<td>4.4E+10</td>
<td>1.6</td>
<td>1.3E+09</td>
<td>5.7E+03</td>
<td>3.6E+03</td>
</tr>
<tr>
<td>Light-Duty Trucks</td>
<td>1.9E+06</td>
<td>2.4E+10</td>
<td>4.2E+10</td>
<td>1.7</td>
<td>1.5E+09</td>
<td>7.5E+03</td>
<td>4.4E+03</td>
</tr>
<tr>
<td>Tranist - Bus</td>
<td>> 853</td>
<td>6.3E+07</td>
<td>5.5E+08</td>
<td>8.7</td>
<td>1.2E+07</td>
<td>2.4E+04</td>
<td>2.8E+03</td>
</tr>
<tr>
<td>Transit - Rail</td>
<td>23</td>
<td>1.6E+06</td>
<td>5.4E+07</td>
<td>34.3</td>
<td>1.2E+07</td>
<td>2.6E+04</td>
<td>7.5E+02</td>
</tr>
</tbody>
</table>

*Hiawatha LRT for the year 2005

**Load factor is unknown for the State of Minnesota, estimates for the entire US were used instead, except for LRT

- Metro Council data; basis for calculating VMT reductions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metro</th>
<th>Non-metro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip length (miles)</td>
<td>6.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Trip rate (trips per day)</td>
<td>4.5</td>
<td>3.7</td>
</tr>
<tr>
<td>Vehicle occupancy (passengers per vehicle)</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>Mode split - auto</td>
<td>89.6%</td>
<td>94.5%</td>
</tr>
<tr>
<td>Mode split - transit</td>
<td>2.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Mode split - walk/bike</td>
<td>8.1%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>
GHG Emissions By Travel Mode- Average And Marginal Emissions

- **Average CO2-e (g/PMT)**
- **Marginal CO2-e (g/PMT)**
- **Average CO2-e (g/seat-mi)**

- Motorcycle
- LDT/SUV
- Car
- HEV Car
- Electric Vehicle
- Bus
- Light Rail
- Commuter Rail
- Heavy Rail
- Ferry
- Airplane
Cap and Trade, Carbon Tax

• Both are challenging to implement for state transportation systems
 – Taxes politically unpopular
 – How to set dollar amount
 – Demand may be inelastic – i.e., limited choices on fuels

• Cap and trade technologically difficult for millions of vehicles (emissions must be tracked)
Policy Impacts On MN Reduction Goals
Range of Percent Reductions Against 2015 and 2025 Goals

<table>
<thead>
<tr>
<th>Strategy</th>
<th>2015</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GHG reduction,</td>
<td>Percent of 2015 Goal</td>
</tr>
<tr>
<td></td>
<td>MMTCO₂e</td>
<td></td>
</tr>
<tr>
<td>CAFE (with proposed phase-in)</td>
<td>2.7 - 4.1</td>
<td>49 - 73%</td>
</tr>
<tr>
<td>California tailpipe GHG standards</td>
<td>2.9 - 4.3</td>
<td>51 - 77%</td>
</tr>
<tr>
<td>CAFE with comprehensive smart growth</td>
<td>3.0 - 4.5</td>
<td>54 - 80%</td>
</tr>
<tr>
<td>CAFE with low carbon fuel standard (LCFS)</td>
<td>3.5 - 5.2</td>
<td>62 - 94%</td>
</tr>
<tr>
<td>California standards with comprehensive smart growth and LCFS</td>
<td>3.9 - 5.9</td>
<td>70 - 105%</td>
</tr>
</tbody>
</table>

Ranges show +/- 20% uncertainty around nominal LEAP model value.
<table>
<thead>
<tr>
<th>Strategy</th>
<th>2015</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GHG reduction, MMTCO$_2$e</td>
<td>Percent of 2015 Goal</td>
</tr>
<tr>
<td>CAFE (with proposed phase-in)</td>
<td>3.4</td>
<td>61%</td>
</tr>
<tr>
<td>California tailpipe GHG standards</td>
<td>3.6</td>
<td>64%</td>
</tr>
<tr>
<td>CAFE with comprehensive smart growth</td>
<td>3.8</td>
<td>67%</td>
</tr>
<tr>
<td>CAFE with low carbon fuel standard (LCFS)</td>
<td>4.4</td>
<td>78%</td>
</tr>
<tr>
<td>California standards with comprehensive smart growth and LCFS</td>
<td>4.9</td>
<td>88%</td>
</tr>
</tbody>
</table>
VMT Reductions From Land Use And System Shifts

<table>
<thead>
<tr>
<th>Policy</th>
<th>Estimated VMT Reduction in 2025, Relative to the Do-Nothing Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do-nothing Alternative (0.9% annual growth)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Smart Growth - Limited</td>
<td>1.5%</td>
</tr>
<tr>
<td>Smart Growth - Comprehensive</td>
<td>3.4%</td>
</tr>
<tr>
<td>Smart Growth - Aggressive</td>
<td>5.3%</td>
</tr>
<tr>
<td>Construction of Light Rail Transit (LRT) Network</td>
<td>2.2%</td>
</tr>
<tr>
<td>Construction of Bus Rapid Transit (BRT) Network</td>
<td>2.2%</td>
</tr>
<tr>
<td>Construction of Commuter Rail</td>
<td>0.1%</td>
</tr>
<tr>
<td>General Transit Improvements</td>
<td>0.3%</td>
</tr>
<tr>
<td>Employer / Municipal Parking-Pricing Plans</td>
<td>0.3%</td>
</tr>
<tr>
<td>Pay-As-You-Drive (PAYD) Insurance (10% penetration rate)</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Do-nothing Alternative (0.9% annual growth)